Vectơ chỉ phương của đường thẳng
1. Vectơ chỉ phương của đường thẳng
Định nghĩa :
vectơ

Nhận xét :
- Nếu
- Một đường thẳng hoàn toàn được xác định nếu biết môt điểm và một vectơ chỉ phương của đường thẳng đó.
2. Phương trình tham số của đường thẳng
- Phương trình tham số của đường thẳng ∆ đi qua điểm M0(x0 ;y0) và nhận vectơ
∆ :
-Khi hệ số u1 ≠ 0 thì tỉ số k=
Từ đây, ta có phương trình đường thẳng ∆ đi qua điểm M0(x0 ;y0) và có hệ số góc k là:
y – y0 = k(x – x0)
Chú ý: Ta đã biết hệ số góc k = tanα với góc α là góc của đường thẳng ∆ hợp với chiều dương của trục Ox
3. Vectơ pháp tuyến của đường thẳng
Định nghĩa: Vectơ
Nhận xét:
- Nếu
- Một đường thẳng được hoàn toàn xác định nếu biết một và một vectơ pháp tuyến của nó.
4. Phương trình tổng quát của đường thẳng
Định nghĩa: Phương trình ax + by + c = 0 với a và b không đồng thời bằng 0, được gọi là phương trinh tổng quát của đường thẳng.
Trường hợp đặc biết:
+ Nếu a = 0 => y =
+ Nếu b = 0 => x =
+ Nếu c = 0 => ax + by = 0 => ∆ đi qua gốc tọa độ
+ Nếu ∆ cắt Ox tại (a; 0) và Oy tại B (0; b) thì ta có phương trình đường thẳng ∆ theo đoạn chắn:
5. Vị trí tương đối của hai đường thẳng
Xét hai đường thẳng ∆1 và ∆2
có phương trình tổng quát lần lượt là :
a1x+b1y + c1 = 0 và a 2+ b2y +c2 = 0
Điểm M0(x0 ;y0) là điểm chung của ∆1 và ∆2 khi và chỉ khi (x0 ;y0) là nghiệm của hệ hai phương trình:
(1)
Ta có các trường hợp sau:
a) Hệ (1) có một nghiệm: ∆1 cắt ∆2
b) Hệ (1) vô nghiệm: ∆1 // ∆2
c) Hệ (1) có vô số nghiệm: ∆1 = ∆2
6.Góc giữa hai đường thẳng
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành 4 góc. Nếu ∆1 không vuông góc với ∆2thì góc nhọn trong số bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2. Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2bằng 900 .Trường hợp ∆1 và ∆2 song song hoặc trùng nhau thì ta quy ước góc giữa ∆1 và ∆2 bằng 00. Như vậy gương giữa hai đường thẳng luôn bé hơn hoặc bằng 900
Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là
Cho hai đường thẳng ∆1 = a1x+b1y + c1 = 0
∆2 = a 2+ b2y +c2 = 00
Đặt
cos
Chú ý:
+ ∆1 ⊥ ∆2 n1 ⊥ n2 a1a2+ b1b2 = 0
+ Nếu ∆1 và ∆2 có phương trình y = k1 x + m1 và y = k2 x + m2 thì
∆1 ⊥ ∆2 k1.k2 = -1.
7.Công thức tính khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng Oxy cho đường thẳng ∆ có phương trình ax+by + c = 0 và điểm M0(x0 ;y0).Khoảng cách từ điểm M0 đến đường thẳng ∆ kí hiệu là (M0 ;∆), được tính bởi công thức
d(M0 ;∆) =